Production of Short-Lived ³⁷K

Heather Stephens, Rose-Hulman Institute of Technology Dr. Dan Melconian and Dr. Praveen Shidling, Cyclotron Institute at Texas A&M University

Purpose of Research

To produce, at the Cyclotron Institute at Texas A&M University, a beam of 37 K and filter unwanted contaminants using the MARS Spectrometer and then reduce the uncertainty of it's half-life to < 0.03%.

Current Half-Life 37 K: 1.2248 \pm 0.0073*

*N. Severijns, et al., Phys. Rev. C 78, 055501 (2008).

Beginnings

Why 37K?

- * Isobaric Analog Decay
- * Future use in Cyclotron Experiments
- * Increase Knowledge of Isotope

Method of Production

Using the K500 Cyclotron to produce a beam of ³⁸Ar at 25-30MeV/u and then bombarded a Hydrogen Gas target to trigger a series of nuclear reactions.

The products of these reactions then passed through the MARS Spectrometer to separate ³⁷K from the other fragments of the nuclear reaction.

A detector was placed at the end of the spectrometer to analyze the resultant beam.

LISE++

- An essential program!
 - Helped determine optimal energy for desired results
 - Calculates Production Rates, Purity, and Plots of Resultant Beam

LISE++

The group determined the best energies for the experiment were 25MeV/u and 29MeV/u.

Two-Body Reaction (38Ar → 37K) Open Slit

Energy (MeV/u)	Upper Slit	Lower Slit	Result (MeV/u)	# Cont.	Production Rate
25	25	-25	19.082	24	6.45E+03

Fusion Reaction (38Ar \rightarrow 37K) Open Slit

Energy (MeV/u)	Upper Slit	Lower Slit	Result (MeV/u)	# Cont.	Production Rate
29	25	-25	23.103	30	3.82E+05

Note: Two-Body and Fusion Reactions both occur simultaneously in the actual experiment. However, LISE++ allows for analysis of individual types of reactions.

We also were able to determine approximate dipole settings for the MARS spectrometer as a starting point for the experiment.

MARSinator

The MARSinator program inputs experimental settings and determines optimum dipole settings for the MARS Spectrometer.

Dipole settings are adjusted to select out of the beam specific magnetic rigidity.

Conducting the Experiment

- Multiple Energy Settings: 25MeV/u, 29MeV/u, 29MeV/u with Degrader
- MARSinator Simulation for Rigidity Settings
- Short Collection, Extended 5 Minute Tests, Final Long Exposure (500,000 count)

25 MeV/u

29MeV/u

29MeV/u with Degrader

Data Analysis

The bulk of the analysis from the team's experiment was based on identifying each isotope which was detected.Our energy calibration value of 0.295MeV/channel was determined from prior experiments.

Energy (MeV) = Channel Number * Energy Calibration

Energy (MeV) = 3017.55 * 0.295 = 890.18 MeV → 37K

Data Analysis: Identification of Nucleons

<u>Slits</u>	<u>Slits Closed - 101001 (Brho - 584A)</u>								
Avg. Channel	Data (MeV)	Identity	LISE++ (MeV)						
3017.55	890.18	37K	888.18						
2811.73	829.460	35Ar	833.650						
2676.00	789.419	33CI	788.610						
2548.08	751.684	31S	743.577						
2402.59	708.763	29P	698.547						
2236.59	659.793	27Si	653.460						
2080.35	613.704	25AI	608.409						
1936.81	571.360	23Mg	563.368						
1810.85	534.200	21Na	518.345						
1564.78	461.610	19Ne	473.321						
1303.26	384.462	17F	428.419						

Data Analysis: Production Rate

After identifying each isotope, the focus turned to understanding the amount we were able to produce.

These production rates help determine the purity of ³⁷K made.

	Production Rates and Contamination							
Identity	Production Rate	% Contamination						
37K	1756.44	99.282 ± 0.942						
35Ar	3.5	0.199 ± 0.011						
33CI	2.29	0.130 ± 0.009						
31S	2.46	0.140 ± 0.009						
29P	1.12	0.064 ± 0.006						
27Si	1.63	0.093 ± 0.007						
25AI	0.42	0.024 ± 0.004						
23Mg	0.33	0.019 ± 0.003						
21Na	0.25	0.014 ± 0.003						
19Ne	0.22	0.013 ± 0.003						
17F	0.28	0.016 ± 0.003						

Energy (MeV/u)	Production Rate (counts/nC)	% Contamination	% Purity
25	807.75	0.814 ± 0.022	99.816 ± 0.022
29	1756.44	1.070 ± 0.025	98.93 ± 0.025
29 with Degrader	1956.13	1.595 ± 0.029	98.405 ± 0.029

What Comes Next?

Application of our results comes in the next experiment to be held August 20, 2010.

By implanting ³⁷K into Mylar tape, we will be able to measure the beta decay isotopes in our generated beam and determine the half-life of ³⁷K.

SRIM Calculations

We want to determine the optimum placement for ${}^{37}K$.

<u>25M</u>	25MeV/u: Placement in Mylar (um)							
Aluminum Thickness	³⁷ K	³⁵ Ar	³³ CI	³¹ S	²⁹ P	²⁷ Si		
85.74	5	0.00	7.25	16.81	28.24	41.28		
79.04	10	0.00	11.91	21.73	34.09	47.79		
72.69	15	7.64	16.76	27.02	40.37	57.99		
66.74	20	12.75	21.69	32.70	46.57	65.54		
60.14	25	17.85	27.65	39.63	54.16	70.83		
56.38	30	21.01	31.88	43.94	58.93			
51.07	35	26.49	37.83	50.71	66.69			
46.52	40	32.00	43.34	56.89	73.07			
43.16	45	35.76	47.86	61.82				
39.41	50	40.38	52.94	67.44				
36.27	55	44.82	58.28	72.72				
33.47	60	49.41	62.84					
28.55	65	57.42	71.39					

29MeV/u: Placement in Mylar (um)							
Aluminum Thickness	³⁷ K	³⁵ Ar	³³ CI	³¹ S	²⁹ P	²⁷ Si	
172.11	5	2.14	16.17	28.68	43.66	59.16	
163.12	10	8.69	21.37	34.49	50.56	66.67	
153.45	15	13.79	27.31	41.33	58.4	75.47	
146.42	20	18.13	32.24	47.05	64.43		
136.56	25	24.63	39.77	55.20	73.66		
131.54	30	28.39	43.75	59.83			
123.35	35	34.38	50.39	67.70			
117.37	40	39.30	56.04	73.79			
111.52	45	44.82	61.92				
105.79	50	50.20	68.02				
100.94	55	54.97	73.35				
98.37	60	57.83					
90.13	65	67.15					

29MeV/u Degrader: Placement in Mylar (um)							
Aluminum Thickness	³⁷ K	³⁵ Ar	³³ CI	³¹ S	²⁹ P	²⁷ Si	
64.61	5	20.72	30.80	46.60	63.32		
58.82	10	26.17	36.69	53.53	70.72		
53.28	15	32.00	43.34	60.82			
48.10	20	38.22	49.97	68.49			
43.16	25	44.44	56.93	76.50			
38.92	30	50.59	63.31				
34.63	35	57.01	70.42				
31.20	40	62.85					
27.90	45	68.46					
24.73	50	73.34					
22.07	55						
19.70	60						
15.51	65						

25MeV/u: Placement in Mylar (um)							
Plexiglas Thickness	³⁷ K	³⁵ Ar	33CI	³¹ S	²⁹ P	²⁷ Si	
143.53	5	0.00	9.76	34.16	60.42		
132.10	10	0.00	20.00	44.25	70.58		
121.08	15	8.71	29.80	53.88			
110.74	20	18.17	38.88	62.97			
99.25	25	28.13	49.01	73.14			
92.71	30	34.11	54.84				
83.49	35	42.30	62.75				
75.57	40	49.13	69.61				
69.73	45	54.28	74.74				
63.23	50	64.70					
57.80	55	68.60					
52.95	60	76.44					
44.50	65						

29MeV/u: Placement in Mylar (um)							
Plexiglas Thickness	³⁷ K	³⁵ Ar	³³ CI	³¹ S	29 P	²⁷ Si	
294.71	5	1.18	41.43	81.10			
278.88	10	15.41	55.28				
261.89	15	30.57	70.09				
249.56	20	41.56	81.04				
232.31	25	56.52					
223.53	30	64.27					
209.23	35	76.90					
198.79	40						
188.59	45						
178.62	50						
170.18	55						
165.71	60						
151.38	65						

29MeV/u Degrader: Placement in Mylar (um)							
Plexiglas Thickness (um)	³⁷ K	³⁵ Ar	³³ CI	³¹ S	²⁹ P	²⁷ Si	
107.02	5	34.45	56.16	87.93			
96.96	10	43.41	65.08				
87.32	15	51.88	73.75				
78.32	20	59.83	81.55				
69.73	25	67.29					
62.38	30	73.72					
54.95	35	80.36					
49.04	40						
43.39	45						
38.01	50						
33.56	55						
29.63	60						
22.81	65						

Measuring Half-Life

We can measure the half-life of what has been implanted onto the Mylar tape by counting the amount of beta decay per time. This is why purity is essential!

Nucleon	Half-Life (sec)*	Uncertainty (sec)*
³⁷ K	1.2248	0.0073
³⁵ Ar	1.7752	0.0010
³³ Cl	2.5111	0.0040
³¹ S	2.5740	0.017
²⁹ P	4.140	0.016
²⁷ Si	4.135	0.019
²⁵ AI	7.182	0.012
²³ Mg	11.3243	0.0098
²¹ Na	22.487	0.054
¹⁹ Ne	17.248	0.029
¹⁷ F	64.61	0.17
¹⁵ O	122.24	0.27
¹³ N	597.882	0.234
¹¹ C	1221.60	1.56

*N. Severijns, et al., Phys. Rev. C 78, 055501 (2008).

Conclusion

It was concluded the best settings for optimal production and purity of ³⁷K is tuning the initial ³⁸Ar beam to 29MeV/u and possibly adding the Aluminum degrader.

Improvements can be made on the rigidity settings to increase production by setting the dipoles to 584Amps.

Additionally, when half-life is measured, we can expect to see small traces of other isotopes but maintain purity of 98.93 \pm 0.025 % and rate of 1756 counts/nC.

A Special Thanks

I am very thankful for the patience and encouragement offered by the team which included Spencer Behling, Michael Mehlman, and especially Dr. Dan Melconian and Dr. Praveen Shidling. I could not have done it without them.

Also, I would like to thank the National Science Foundation and Department of Energy, as well as the Cyclotron Institute of Texas A&M for the funding and opportunity of this experience.